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The Arrow System

(Draft Form)

Abstract

This proposal introduces a unified system for computations based on a cybernetic theory introduced here as
model-level reflection.  It provides a specification of what the Arrow system is and what it does for software
systems.  It outlines the theoretical basis for the system in terms of analysis of modern programming systems
and their reflective capabilities.  The system transcends the limitations of state-of-the-art reflection systems
due to the current restricted notion of meta-systems.  The system can represent any intuitive concept, and can
manage the interactions among arbitrary domains of knowledge.  Because of these properties, the user may
delegate arbitrary aspects of its own operation and management to itself, with reliable and reusable results.
The nature of the system is ideal for computations in a unified field of knowledge, and as such provides an
ideal basis for the migration of knowledge to new contexts and uses.

1 Introduction
The Arrow system is a way for computing devices to model and manipulate collections of information

gained from the world, up to and including the higher-order reasoning structures of which humans are capable.  The
goal for the system is to promote complete freedom in the sharing of useful information among people and machines.
The technical proposal to achieve this goal is a homo-iconic fine-structure intensional information-processing system
intended to support model-level reflection in a clean and useful manner.  The means to this goal is a central logical
construct with as little semantics implicitly specified as possible, in order to allow the system the greatest possible
freedom in reflection on the state of information obtained.  This single primitive allows a great freedom in modeling
capabilities for the system’s knowledge base.  Because the system is homo-iconic, this central construct’s semantic
capabilities extend to yield more freedom in reflection upon the system’s state and dynamics.  This core of a model-
level reflective system has ideal properties for a unified computation system with vast reflective abilities.  To place
this proposal within the space of software types, one should accurately identify it as offering more than an information
database, but less than full artificial intelligence.

The Arrow paradigm is actually a simple analytical process involving the identification of binary ordered
relationships at the level of individual logical atoms from any domain conceivable.  The essential concept is the
analysis of a domain in terms of these primitive information atoms.  This paradigm allows for an “uncountable”
number of objects to exist within its domain, to allow for the effective discussion of, say, the real number system and
its properties.  From a mathematical perspective, the arrow world in terms of elementary model theory is a system for
managing the Robinson diagrams and positive diagrams of all models that agents deem useful for a knowledge
system.  The subject of the Arrow system is an extension of this concept of a Robinson diagram abstracted over the
symbols that form the logical basis for these diagrams.  The extension involves the integration of the logical theory
provided by a model and the rules and symbols of the model of the system of logic that supports that theory.  This
allows a semantics of declaration and inference that vary from category theory to state-machine algebras.

Section 2 defines the basic vocabulary and concepts that the Arrow system is intended to support, most
importantly outlining a theory of reflection at a model level and characterizing the types of systems that support this
theory.  Section 3 characterizes modern programming systems in terms of their abilities to meet the goals of general-
purpose model level reflection.  Section 4 specifies the characteristics of the Arrow system and derives its properties
constructively.

MetaText
This paper assumes a familiarity with the philosophical domains of both cybernetics, as proposed by Norbert

Wiener, and liberal utilitarianism as proposed by John Stuart Mill’s essays “On Liberty” and “Utilitarianism”.
Though throughout the progression of the arguments the reader could consider the words “man” and “machine” as
interchangeable, this viewpoint does not mean to infer that such concepts are identical from the perspective of any
domain other than cybernetics.  In addition, the word “system” denotes a cybernetic entity, consisting of a mechanism
for managing information.  Such entities usually involve an incomplete union between man and machine.  A utilitarian
goal in this light is to maximize freedom for people involved in such systems by removing the unnecessary
information overload inherent in present-day systems.  Another goal is to promote information freedom at all levels.
In this way, not only does the argument seek to enable information access for humans; it also seeks to expand the
amount and type of relevant information available to the reasoning powers of computing systems.  Such availability
increases the capacity of the system to be useful.
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This paper also includes some concepts only recently elaborated upon by computer science researchers from
around the world.  Since the intent here is to introduce new concepts, a significant part of the argument will clarify
those ideas to support understanding of the system's design.  Certain concepts are typeset in boldface whose
definitions are useful in building a picture of the Arrow system.  For further information, the paper directs the reader
to the references mentioned below.

2 Reflection

2.1 Basic Reflection

2.1.1 Definition
This argument takes reflection to be the capability of a system to contain references to itself within the

contexts it supports.  Since all atoms available for reference are thereby available for “re-use”, reflection yields the
ability for a system to modify its purpose and scope; a reflective system may “use” itself in ways that only the user
could otherwise.

This definition depends upon the expressiveness of the system’s algebras, since the availability of the system
for use as a first-order object provides for its interactions via those algebras only.  These algebras determine the nature
of reflective capabilities in terms of introspection and intercession.

Given that we restrict our domain to those systems that are homo-iconic, we may infer that reflective
statements or actions are only as expressible as the statements or actions within the first-order model for a system.  In
the same way, such reflective abilities will be quite as permissive and powerful as the first-order model allows.

2.1.2 Related Terms
The argument considers the kernel of a system given to be non-reflective as first-order  or first-class.  This

is the object of “discussion” for any reflective system or meta-system.

When the system reifies models of itself for analysis, it performs introspection.  When an agent effectively
identifies that model with the current system’s state, so that modifications to the model within the language produce
changes in the system’s state to maintain consistency with the model, the system is then performing intercession.
Generally, modern systems find intercession more difficult than introspection in providing semantic cleanness,
primarily due to inadequate models of the semantic capabilities of current systems.

The meta-system, in traditional systems with logical models, is a cleanly separated system whose domain is
the first-order system.  Its results are available to the manipulator of the first-order system for evaluating and
modifying the first-order system.  From a programming perspective, meta-programming involves the ability to
perform actions usually reserved for the compile-time environment within the run-time system.  In this way, programs
can themselves choose other code to compile and run within their procedure or function contexts during compilation
or execution.

A homo-iconic system consists of structures built from a single type of construct.  All atoms within the
system have identical implicit semantics.  A system that reflects upon a homo-iconic system therefore reasons about
structures of this single construct.  All reflective discussions exist only in terms of collections of these fundamental
objects in a homo-iconic system.

A virtual machine for a given system is actually a formally defined interface between that system and
another one.  Alternately, an algebra for an identifiable interface constitutes an operational description of a virtual
machine.  Algebras involve operators, combinators, functions, and constants.  A more neutral term is the mathematical
concept of a state-machine.  This consists of featureless objects called states and transitions defined between the
states which comprise the operations allowed on that state.  Any modification to a state-machine by its current state
constitutes reflection.  A language in this context is a state-machine model coupled with a syntactical formalism, so
that it constitutes an interface to that model.

A reification of a given concept is a reflective action that alters the virtual machine’s model to create a new
context.  This action yields a new first-order type for the system within that context.  Previously, that type was an
implicit  part of the context’s semantics, usually perceivable by a thinking observer only.  The stance taken by this
paper is that an algebra of context  best handles the implicity of a given concept.  In such a system, all actions exist in
terms of the context-shifts that they engender.  In this way, context-space becomes part of a language for expressing
the semantics of an action.

The loop of reflection for a given system consists of a closed path of information flow regarding that
system.  This flow extends outward from the system into some collection of meta-systems.  A human-concerned
philosophy expresses interest in that part of the flow that a person receives, digests, and responds to by returning
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information to the system in question.  Cybernetics considers many loops of reflection to apply to a given domain,
because a domain may have many interpretations.

2.1.3 Purpose
A philosopher would usually consider reflection’s utility in terms of the benefits derived from the structure

of the meta-system(s) used to encode reasoning about a situation within the domain.  Overall, the effects of that
reasoning on the capabilities of the domain therefore should serve the largest possible domain.  The significant loop of
reflection to this argument is that which models and solves problems in the system’s domain.  The argument seeks to
improve the utility of this loop by making those problem solutions applicable to the widest set of domains possible.

Reflection as an action should enable the system to encompass the parts of the manipulator of the first-order
system that it can.  As a transition for system contexts, it should allow complete freedom in such manipulations.  It
follows that the most useful type of system would encompass all the transitions that it can rationalize into its domain
for reflection.  It should also allow the greatest possible capacity for modeling in order to maximize its ability to
understand these actions.

2.1.4 Example Domains

2.1.4.1 Human Thought
A person, via reflection, can think about a thing that he or she does, given a suitable means of expressing an

ontology for the situation in which the given action occurs.  This is the applicable meaning of the term within the
English language.  It is generally accepted, for instance, that thought itself falls under the domain of actions, and that
it is reasonable for a person to reflect on such actions as well.

2.1.4.2 Computer Programming
Traditionally, to program a computer is to specify a structured collection of posited formal statements in

some statically specified domain.

This is the traditional model of formal specification for a human-computer relationship.  This general
concept models almost every human-computer interaction specification.  Cybernetics characterizes the vast majority
of present computer systems species as having a collection of such domains created for them.  The meta-structure for
such domains specifies their interaction.  This meta-structure is the subject of programming reflection.  The
reflective part of current programming systems consists in procedures that manipulate the current state of running
programs.

2.2 Model-Level Reflection

2.2.1 Definition
Model-level reflection is reflection on the state and structure of a system at a higher level of semantics.

Model-level reflection considers ontologies and their effects for basic reflection and circumscription upon the domain,
which includes its own information, knowledge, and processes.  Therefore, this scheme constitutes an algebra for
basic reflection and circumscription via ontologies.  Within this system, there are several terms by which to discuss
the action in question.

The definition of model-level reflection relates to the concept of the knowledge-level in current artificial
intelligence research.  The structure of a knowledge-level description per Aurelien Slodzian’s ideas is as follows.
Agents elaborate on an information state over which they have complete access and control.  Models describe the
knowledge used or produced by the agent while performing its tasks.  Models exist as first-order entities to describe
domains.  These models form the agent’s current state of knowledge.  These models would contain the concepts
whose interactions would form the structure of a language for describing various situations.  The agent may have
multiple models per domain and multiple domains per model.  Methods are the means that the agent has available for
modifying its knowledge state.  Tasks describe the agent’s goals and their structure.

The intent of this structure is to provide a useful categorization for the functions of a system and their
relations to other systems.  Particularly, an agent represents a locus of action for a system to analyze.  Models are
obviously the gained state of information due to the actions of agents.  Methods describe the building blocks and
combinators available with which the agent may act.  Tasks describe the set of constraints and axioms expected of the
system by the various systems with which it interacts, notably the hardware of its implementation, other software
systems, and humans and their organizations.  This ontology provides the reflective system with a high-level model of
itself for manipulation that respects the integrity of information gained.
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Since the original intended context for this concept is that of knowledge engineering, or its extension,
artificial intelligence, some translation is necessary to relate these terms to the concepts of programming.  Knowledge-
level description should be inherently concerned with neither the representation of the agent’s knowledge nor the
concrete mechanism used to perform the tasks.  However, both subjects should certainly be part of its domain for a
system addressing overall utility for its users.  Such is the subject of execution-level reflection, which is naturally not
in the user’s best interest upon which to focus.

The mathematical notion of a model involves the identification of basic symbols, such as functions and
relations, from which an agent develops a logical theory to account for the domain in question.  Models as such are
arbitrary to construct, since several sets of symbols may be equivalent in their expressive power.  Intuitively, a
Robinson diagram is a function of a model that represents all true closed statements within that model.  A positive
diagram is that similar function concerning true atomic sentences in general.  The present argument takes an
expanded interpretation of the model notion, including not only the symbols subject to axioms, but also the model for
the inference system that provides the Robinson or positive diagram itself.  The combination of these conceptual
levels yields a deeper and more meaningful structure to the usual notion of Robinson diagrams and positive diagrams.
For instance, functions mapping expressions to truth-values subsume relation symbols.  In addition, the current stance
is to abstract the diagram notion over the symbols used, so that the result is a powerful algebra of context shifts in
terms of inference systems and functions.  This discussion shall take this new notion of a diagram for a model to be an
arrow diagram .

Within the usual reflective systems, the system holds a model of itself, and the user and system manipulates
the system's state according to that model.  In contrast, model-level reflective systems may dynamically instantiate
arbitrary models for arbitrary structures within the system or without of it, and provide first-order identification of
those models with their intended subjects.  To elaborate, a model-level reflective system may be seen as a system of
abstractions for reasoning about the world, wherein the system has an effective means for applying models to its own
structure in arbitrary ways.  It should also be able to enforce the constraints desired for itself based on reasoning
enabled by those models.

The model level of a domain, in this light, recognizes the universality of model theory, and therefore applies
the model metaphor to all the elements of its domain.  For instance, the agent’s knowledge proper is subject to
modeling (as it also is at the knowledge level) within a system that reflects at this level.  However, the tasks, the
methods, the models themselves and representations of the agent are also available for analysis and modification
according to semantics provided by the system.  In order to maximize utility, the system should include within its
domain the actual implementation of the system on a given set of hardware devices and the management of interface
with system users.  It should also provide reliable tools for verification of all implementation and communication
decisions made by the system and the user.  In this way, the user may prolong the effective lifetime of the system and
the information that it maintains in a simple manner.  In addition, the interface to users of a system whose design pays
close attention to overall utility could handle issues of migration among implementations and interfaces transparently.

Informally, this discussion takes knowledge to be the closure of an information structure with an
‘intelligent’ context provided by an underlying system, as symbolically provided by the presence of agents.  We
attribute knowledge to the agents by observing their actions; an agent “knows” something if it acts as if it had the
information and is acting rationally to achieve its goals.  The intelligence of the context is such that it can understand
the effects of information updates on the knowledge that the system manages.  Such structures as inference systems,
type systems, and ontologies provide these effects.  A model-level system therefore maintains such a database of
knowledge derived from received information.  A desirable property of this maintenance is for the system to manage
consistency reliably within that knowledge database.  There are two basic approaches to this question of consistency.
The system may maintain a single consistent state wherein the new information and the current task determine the
effect on the knowledge structure.  Otherwise, the system maintains multiple states of information under an algebra of
states wherein the new information always provides an information transition from the old set of states to a new one in
a decidable manner.  The latter approach results in a more complete system of information regarding the interactions
of ontologies.  A complete system in this regard is the right step towards model-level reflection.

This approach to reflection is much more general in scope than programming reflection in that programming
reflection usually consists of a library of functionality that accesses and manipulates the executing programs.  This
takes a restricted view of the scope of reflection, since the structure of the virtual machine model and the process it
facilitates, taken as a whole, is not subject to analysis or significant modification.  Model-level reflection takes
knowledge descriptions of a system and its substrate, the virtual machine, and integrates them into a coherent whole.
While reflection may modify the state-machine that defines the virtual machine, model-level reflection observes and
modifies the reasoning behind the choice of model.  The model is not only the subject of model-level reflective
analysis; it is also the medium for such operations.

Model-level reflection in a homo-iconic system must derive from the same primitive as the building block
for the first-order system in order to preserve the accessibility of information and knowledge.



5

2.2.2 Related Terms
A context is a function of a model that provides an environment for agents that fully supports that model.  A

context therefore provides all accessible information in terms of structures specified by that model.  In the same way,
information actions that the agent takes may produce outgoing information that the system casts into remote domains
via inverse translations.

An ontology is an explicit formal specification of a conceptualization, or a conceptual model for a domain.
Specifically, ontologies are concerned with the objects, concepts, and relationships among them within some domain.
In formal terms, an ontology is the statement of a logical theory.  In terms of contexts, an ontology is associated with
the space in which actors model domains in terms of the ontology, and so ‘respect’ the restrictions posited by the
ontology concerning its objects.  Informally, this argument will consider the ontology for a context to be a description
of the objects that are available for discussion.

An ontological frame denotes the formal model specified by a structure of ontologies, as well as the
universe of discussion that it generates.  Frames are structures of contexts, perhaps uncountable in size.  The
ontologies specified for the frame may crosscut each other in arbitrary ways, to allow the frame user to have the
structure due to crosscutting available for study and first-order use.  A model-level system develops its knowledge in
terms of ontologies and their frames.  Often, agents may find models within such a system mutually contradictory, and
this is both permissible and desirable.  Contradictions between models in the system allow for agents in the system to
make assumptions contrary to the current state of information and study the consequences of the assumptions upon the
relationships among various models.  The means for encapsulating contradictions is merely to reify the instantiation of
a new context that distinguishes the new set of inconsistent information from the old.

Ontologies are not absolute, as is evident from the need for translation schemes among the various human
and computer languages.  This suggests a concept of ontological relativism, which denotes the idea that the
preference for an ontological frame is entirely relative to some base frame or structure of frames.  Equivalently, no
ontology can be inherently optimal for working with a specific domain.  The overriding motto would be that “No
knowledge is an island.”  All agents approach ontology constructions with some frame in mind.  A naturally useful
paradigm foresees the consequences of this method and adjusts it for the general relativity of ontologies and their
frames.  Considering the relativity of ontologies, then, the system should not consider a particular ontology or frame
as an absolute reference, but instead a relative reference where the results achieved by the modeling by default apply
locally unless proven otherwise.

One may consider an ontology analogous to a set of definitions that apply to a specific domain within a
dictionary for a human language.  The agent draws vocabulary used in the definitions from some known source of
meaning.  The grammatical structure of the sentences used interacts with the user’s knowledge to produce a
refinement of the user’s knowledge of the domains in which the word is used.  In common dictionaries, the source
domain is often the vulgar language.  Specialized dictionaries, however, may specify a vocabulary from some
standard, but specialized, reference vocabulary, as is the case with medical or scientific articles.  This situation
involves the understood use of partial relativism of ontologies, wherein a common (root or general-purpose)
vocabulary is seen as the starting point for the specification of sub-vocabularies useful in restricted domains.

This definition of an ontology suggests modeling specific ontologies as directed links between two domains.
A source domain provides the information from which the user (or the system) builds the ontology within the
description language of a target domain.  Since agents operate within frames, or structures of contexts, it follows that
there may exist multiple ontologies for a given domain within the current context, and that these ontologies may easily
crosscut each other.

Commonly available ontologies enable ontological commitments for a set of agents so that they can operate
on a domain without necessarily using a globally shared theory.  We say that an agent commits to an ontology if its
observable actions are consistent with the definitions in the ontology.  The idea of ontological commitments is based
on the Knowledge-level perspective (Newell, 1982).

Pragmatically, a common ontology defines the vocabulary by which agents exchange queries and assertions
among themselves.  As such, an ontological specification is a specification of definitions of terms.  Ontological
commitments are agreements to use the shared vocabulary in a coherent and consistent manner.  The agents sharing a
vocabulary need not share a knowledge base.  Each knows things the other does not, and an agent that commits to an
ontology is not required to answer all queries that can be formulated in the shared vocabulary.  In short, a commitment
to a common ontology is a guarantee of consistency, but not completeness, with respect to actions and combinators
using the vocabulary from the ontology.

Ontological frames identify the agent from the knowledge perspective.  In this way, a model-reflective
system may represent the user as an agent, making logical guesses about the user ontology frame by the interactions
provided.  If the user exhibits contradictory ontologies, then the system will update the frame accordingly.  In this
way, an agent may study the interaction of these ontologies.  This allows for two or more users to interact with the
system via the same device with no secure identification made, while the interactions between their beliefs and desires
are preserved and managed.  It similarly provides for the use and analysis of a user history in tracking the beliefs and
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preferences of the user as system knowledge develops.  The system provides all of these benefits through casting
users, external software agents, and all other incoming information in terms of agents and their ontologies.

Crosscutting of ontologies is the process of taking a given domain and interpreting it in two or more
mutually independent ontologies.  One may recall the examples from typical mathematical education wherein
constructions and equations express geometry and simple algebra in terms of the each other.  Similarly, the ontologies
that describe the various aspects of a domain often crosscut each other.  We should say that contexts that support first-
order references to the elements and structure of multiple ontologies and their interactions support crosscutting of a
domain ontology.  An ideal model-reflective system provides the arbitrary crosscutting of ontologies to maximize
information accessibility while allowing arbitrary ontologies for use in the desired domain.  This essentially provides
the system with definitions for the elements of a domain from various perspectives, so that the reasoning structures
with access to the domain knowledge can analyze the system from the currently optimal perspective.

A fine-structure system (a.k.a. fine-grained) is one wherein agents may create models for domains from
the basic building blocks provided by the system and their combinations, where the semantic complexity of these
building blocks is minimal.  The label “fine-structure” refers to the fact that such systems that can compute the results
of a complex interaction among objects may, primarily due to the nature of the modeling construct, encapsulate effects
of the computation that are ancillary.  Such effects are usually discarded by the computation process, but result in
additional complexity for the system to manage because such effects are therefore unavailable for logical analysis.
Fine-structure systems are typically also homo-iconic, since a homo-iconic design reduces complexity by reducing the
number of fundamental types, thereby reducing logical assumptions necessary to manage the building blocks.
However, current homo-iconic systems hide the bulk of their complexity within primitive  building blocks, which are
those objects whose semantic definition is unattainable by the system’s domain.  These primitive objects constitute the
main obstacle to general-purpose useful reflection.  This is primarily since the intent of such systems is to provide the
user with a means to rely on those primitives and disregard the availability of information to all parts of the system.
While such a system allows a simple-minded control-based approach to computers, it applies a penalty in terms of
utility, since the system cannot easily reflect upon primitives, so that their semantic content is unavailable though
quite substantial.

2.2.3 Purpose
The intent of model-level reflection is essentially to preserve the information structure governing the

relations between the first-order system and other domains in a semantically well-defined way.  The function of the
model level is to provide support for mappings from arbitrary ontologies to the domain for analysis.  It follows that
model-level reflection should provide general-purpose modeling capabilities for any domain, and that all models
produced should be available for use by all interested parts of a system.  Therefore, model-level reflection is naturally
useful for reifying the properties of a domain that provide the most information for the user in terms of various aspect
issues.

2.2.4 Example Domains

2.2.4.1 Philosophy
A natural generalization of the domain of human thought concerns the motives and ontologies that oneself

and others use.  This domain, once properly extended in its scope, constitutes a homo-iconic system of concepts.  In
this system, the person and language employed become transparent.  That is, the system reduces them to the role of
cybernetic medium while retaining their availability as objects of discussion.

2.2.4.2 Information Systems
The natural generalization of the domain of computer programming concerns the postulation and processing

of information in general.  The computer and user both exit the model as primitive objects, instead becoming specific
objects about which the system may postulate information.  In the process, the computer as context becomes
effectively transparent.  In the present, the only systems qualifying the above criteria consist of a social structure
dedicated to preserving the underlying computing system for a relatively small group of users.  For example, the
primary group of users of the information systems within a modern corporation would be top-level executives,
although the boundaries in this system are quite vague in that even such executives are often necessarily involved in
the process.

The essential property of an information system is the fact that its interface with all other objects is a clean
one that makes transparent all but the interactions of information, and that this interface can interact with arbitrary
domain types.  The kernel of such a system is the system that maintains such an interface.  The cybernetic
optimization problem for such a kernel consists of removing as much noise from human society as possible while
preserving the function of the kernel.  From the outside of such a system, the objects under discussion are atoms of
information.  Within this system, the loops of reflection and their elements become first-order objects for discussion.
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Orthogonal referential integrity and persistence of information become necessary properties in the
management of the system in that they reduce the amount of redundant information necessarily processed by any
element of the kernel.  As the information-base grows, the need for such a management will become critical if the
system is to be useful.

Partial views within a large information system have historically been acceptable due to the complexity of
system relationships.  If the number of relationships between objects increases geometrically with object population,
for instance, then the categorization of these relationships to filter them from views of a large system is necessary if
these relationships are to be comprehensible.  Traditional systems address this with the concept of information
hiding, whereby the system casts the information as either internal or external within a specification.  Systems that are
more elaborate often categorize external information in terms of interfaces, which a small population of objects shares
among itself as a property.  However, these traditional means often exist only in human-accessible (static) ways.

Unity of the information system is essential for and identical to information accessibility.  If there is a cost
inherent in maintaining this unity, then that cost detracts from the overall utility of the system.  More specifically,
system unity does not infer a disregard for the relativity of ontologies, which would suggest the use of a root ontology
from which to base specialized ontologies.  Instead, it employs the understanding of this concept to allow for a far
greater range of information translation ability, by providing paths of information translation that a hierarchy of
ontologies would prohibit.  By losing a fixed reference point, the system gains the ability to reflect upon its own
information structures and domain models from various perspectives.  The result is a far greater potential yield for the
system in terms of its inference capabilities.

2.2.4.3 Knowledge Systems
The following statements outline the type of design intended for the Arrow system to support, considered as

a naturally useful extension to the previous definition of an information system.  The formalization of such systems
has not occurred among the research community, so that these specifications are vague.

Knowledge systems are those information systems whose purpose is to yield real-world modeling
capabilities via free interaction with users.  No system today preserves these properties in a manageable way.  These
systems are those intended to outlast their creators and the conventions they use.  Present day knowledge systems
require a vast array of human participation to propagate.  Utility compels society to improve on this situation.

General-purpose circumscription and pattern-recognition are necessary to manage such a system.  These
services are traditional human mainstays.  Circumscription , the vague primitive notion of reflection upon knowledge
context, constitutes model-level reflection in a simple way.  It introduces contexts as first-order objects and reifies
them as classes of formulas.  The significance of this concept is that predicates and objects from separate domains
may be studied together, allowing the construction of systems that cross the boundaries between contexts.  This action
enables non-monotonic reasoning in a simple way.  Pattern-recognition maps syntactical representations of object-
structures in a source domain and identifies those structures with atomic objects of a target domain.  Significantly,
real-time instantaneous pattern-recognition is a task primarily limited to humans.  However, conventional systems do
not yet encapsulate the result of such a task within their reasoning systems.  Knowledge systems allow such an
encapsulation to exist across the boundaries of existing ontologies, allowing knowledge derived by the user to be
available to the system in a useful way.

In this way, a knowledge system that functions non-monotonically in complete isolation from human
attention constitutes artificial intelligence .  Regarded in the terms of cybernetics, the question of artificial intelligence
shifts from the issue of construction to that of mapping existing knowledge systems onto available hardware.

3 Review of Existing Systems

3.1 Stacks
The basic popular context algebra consists of application of a transition over a hierarchy of contexts.  These

contexts represent the collection of model, method, and task into one form, resulting in a loss of model-level structure
which is difficult to reverse.  The simplest logical model is that of intuitionist logic , wherein assumptions as ‘updates’
and ‘downdates’ develop a lattice of contexts within which an agent bases its logical reasoning.  The pertinent
limitation of this system of logic is that downdating of information is not subject to constraints of high-level
semantics.  Primitive forms of this system include stack-based reasoning systems.

3.1.1 Procedural
The Pascal programming language exemplifies the modification of the simple von Neumann state-update

machine from a maximally permissive model to one with a simple, rigid hierarchy of declarations of state-update
permissions.
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This simple language paradigm is so widely used that it merits analysis.  The stack models context in
allowing the program to push sub-contexts onto the stack or pop them from the stack.  Sub-context types include
procedures, which are sequences of updates to the machine’s state, and records, which are nested name-scopes.  The
primitive construct is a static sequential hierarchy of these contexts.  The state-machine enters sub-contexts in
sequence from the base context.  The purpose of the context-inclusion relation that forms the hierarchy is to guarantee
that variable access and update privileges between each pair of contexts are easy to understand by the programmer and
simple to enforce by the compiler.  Expressed as a context-algebra, the system eventually transforms all contexts to a
single (super-) context, which manages all derived information.  At all times, the current context on the top of the
stack has available to it exactly the current states of all of its super-contexts and no other information.  The solution
obtained brings the inevitable result of a tremendous loss of information and a relatively low utility for information re-
use.

This design arose from a paradigm where state-updates were maximally permissive.  This permissivity
constitutes an obvious inability to easily deal with meta-system management.  In order to compensate, a user must
consistently crosscut the model-level design ontology of the language with the desired one.

Even such a simple language as Pascal has provisions for control-flow modification based on conditional
logic structures and simple looping constructs.  This evidences the incredibly small semantic capabilities of a language
that allows only two operations per knowledge context.  It also supports run-time call crosscutting via exceptions for
extending this basic system of context restriction.  Simula constitutes the first generalization of the paradigm by
merging the procedure and record types’ capabilities into that of objects (to be precise, state machines).  Beta, a
derivative language, generalizes procedures, objects, and exceptions as patterns in order to enhance further the
structures that crosscut this hierarchy.

A possible solution to this dilemma involves the method that file-system designers have used for quite some
time.  The availability of path references constitutes a tremendous extension to the ability of the system to re-use
gained information.  The path concept is a simple reification of the geometrical structure of the hierarchy, and, as
such, constitutes a first-order expression of the system’s context algebra.  In this simple case, block-structure equals
context-structure, so that the familiar operators from Unix may be re-used.  In this way, the foreslash operator (“/”)
acts as a selector coupled with an identifier for the particular relative sub-context.  The ellipses “.” and “..” select the
current context (self) and the parent context (parent), respectively.  Concatenation of these operators and elements of
the domain specification produces programs of context-selection, manipulation, and inspection via standard first-order
procedures.  Given the current apparent success of interfaces to storage based on this meta-system scheme, it seems
amazing that no current large-scale procedural programming language totally integrates this scheme into its definition
as a way of reifying context network topology.

3.1.2 Functional
The original homo-iconic language paradigm concerns the function application and the concatenation

(currying) operators as fundamental and identical.  Context-inclusion relations in the various flavors of Lisp have
employed either run-time call or lexical inclusion.

Functional programming is that which encapsulates all the effects of a context shift on a system as a first-
order logical atom.  The essential word in this case is “all”.  In traditional languages, the concepts of closures,
continuations, and currying operators encapsulate all the effects that would traditionally concern the language.  We
may characterize these effects as introducing new first-order atoms, specifically the results of computations in an
intensional way, that is, by reference to function application, not to the state of a virtual machine in the traditional
sense.

What results is a paradigm of computation where all context-updates equal a function application, so that the
functions available to a system and the restrictions on application invocations entirely determine the range of model-
level reflective methods available to an agent.  In addition, the clean semantics of function application allow the
managing system to both apply and construct functions dynamically, which yields a system of far greater utility than
the basic intuitionist paradigm.  The properties of functional semantics relate to formal proof theory via the Curry-
Howard-deBruyn isomorphism, allowing for the simple formal determination of program semantics.

Here, the functional metaphor extends the path metaphor from the simple hierarchy where block-inclusion
equaled context-inclusion to a system wherein many other function application webs crosscut the unique block-
structure hierarchy.  The selection of a particular set of function applications constitutes the usual idea of a directed
graph of data-flow where nodes model function applications and arrows model transitions in context due to those
applications.  Obviously, our modeling strategy shows that the current context-algebra is far richer than the procedural
method, since identifier selection is no longer sufficient to identify a context-shift.  Instead, context shifts also require
agents to specify an atom of state as the function’s argument, so that the selector is binary vice unary.
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3.2 Objects
The object-orientation paradigm consists of a basic translation of the state-machine model into the model

that localizes all permissions for context updates to the states of (usually) simpler machines.  It consists of the
definition of a clear virtual-machine creation vocabulary in terms of the substrate state-machine’s operations.  It is,
therefore, a translation from the substrate machine into an environment of declared state-machines.  Taking the
paradigm purely without dilution yields a clean model where interfaces are entirely controlled local to the information
concerned.  The object-based paradigm is a specification of permitted information update methods per logical atom.
The result is a useful model for the production of cleanly defined information systems.

Current programming methods, including text-based enumeration of code, limit this paradigm by forcing the
overloading of the meaning of various operators.  A better solution would involve the denotation of metaphors
between objects, formally known as morphisms.  Methods currently must be itemized and limited by text identifiers,
preventing the system from accessing higher-order patterns in a general way.  For instance, current systems for
handling objects in software cannot reify the concept of a binary symmetrical relation into a first-order entity whose
model-level understanding agents may encode within the language.

The object-orientation scheme provides context shifts via instantiation of objects by various methods, as well
as by the semantics of the object’s operations, whether procedural or functional.  The aspect of this paradigm most
lacking in semantical integrity concerns meta-instantiation, wherein new objects are instantiated concerning “lower”
objects.  This notion of meta-systems existing at various “levels” with respect to a base context forbids model-level
reflection in meaningful ways.  For example, if a modern digital computer is considered the base context, then the
current model of meta-instantiation does not cleanly allow structures to be built dynamically from objects for first-
order identification with the hardware as a state-machine.  It follows that the loops of programming reflection are not
available for reflection via modeling within the universe of objects and their interactions.  Such a restriction on
reflective capabilities limits the system domain from exploring various aspects of its operation and use.

3.3 Declarations
Just about every information system contains some aspect of declarational specification.  Some information

in a system always will be interpretable by the user alone, particularly during the development of a system application.
Traditional programming methodology casts such information in the terms of declarations for which the system must
provide static guarantees.  This concept can extend to support the model-level for a domain via an entire information
environment that provides those guarantees in a transformable way.  The extension essentially allows information
transformations in such a way that they do not “fall off the edge of the earth.”  In this way, all declarations may extend
to apply at the knowledge level.  At such a level, the declarations are relative to ontologies and their frames, so that
the reliable translation of meaning for various ontologies is imperative in order to maximize the potential use of this
information.  Declaration-based programming is the information expressed in terms of relationships between logical
atoms.  Such information exists within a larger structure with access to the information that the declaration provides.
This larger structure is traditionally the standard first-order logic of predicates, often restricted further to Horn clauses.

Because the traditional declarational paradigm does not vary from the standard first-order logic, and because
the base model for reasoning it provides is central for the system’s ability to analyze declarations, the misnomer “logic
programming” is often applied.  In truth, the capabilities of the underlying system of logic have no inherent need for
Boolean operators and basic inference relations by themselves.  Furthermore, the specialized languages that advertise
“constraint-based programming” simply augment the system’s domain in a fashion that leaves semantics integrity by
the wayside.  A more reasonable solution would most likely cast many simple constraint problems into the
mathematical space of general linear problem solving and its special cases, such as convex linear problem spaces and
NP-complete and NP-hard problems.  Such a solution would provide a common ontology in which to express and
convert problems from various domains in way that is “computation-friendly”.

The ‘pure’ declarational specification model transforms all specifications of logical atoms into declarational
form, so that for informal purposes, declarational programming completely reifies the implicit semantics of the
system.  The virtual machine for such a model consists of a system that only preserves relationships explicitly stated
by the specification (the explication) and those required by the system of logic supported by the declarational system
(the implicit meaning).  This model only realizes its full potential once the underlying model of the logic system is
available for modification.  For instance, a new set of logical paradigms introduced in the last two decades provides a
structure linking standard predicate logic to the minimal modal logic.  Such a structure includes domains like dynamic
predicate logic, multi-modal logic, arrow logic, and information-transition logic that include subvariants exhibiting
decidability while possessing a quite valuable power to express concepts.  Using these logics as a basis, model-level
reflection at all levels of the system results in a powerful system for managing information.

<< Elaborate here on the properties of dynamic logics, considering the basic concepts of modes from
declarations to modalities and projections in the opposite direction.  >>
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Current declarational programming implementations have achieved limited expressivity and power, so that
they are hardly suitable for general-purpose computations, due primarily to the limitations placed on their application
to the appropriate domains.  For instance, the state-machine for an unbounded stack requires an infinite number of
first-order declarations, a condition for which current declarational systems can not account.  Although a finite
description exists for such a state-machine, such a scheme relies on close interactions between the meta-system and
the first-order system, a strategy that is unpredictable in general among current systems.

A unified system for specifying declarations would combine the concept of specifying procedural logic and
the idea of specifying ‘static’ predicate logic concerning inert concepts.

3.4 Aspects
A current advance in the theory of meta-programming is the notion of aspect separation.  This approach

formally recognizes that the above paradigms fail to singly capture many design issues with their provided ontologies
for building knowledge systems.  Consequently, if the system is to address these design issues, the system must
provide a transformed specification of the ontology, so that elements that address these issues by crosscutting the
original ontology become part of the specification orthogonally.  The transformed system of information exists within
several ‘spaces’, each of which shares a name-space and uses a unique virtual machine to specify relationships
obtaining in the domain.  Preferably, agents should express each of these virtual machines at a high level of
abstraction from the execution domain, since the intent is to supply information about the system that should remain
invariant among various implementations.  The integration of these specifications into a single unit specification tends
to result in a loss of the meta-information that includes the domain ontology and the aspect ontologies.  In traditional
systems, the aspect methodology only occurs within the human mind, and so the computer has no access to this type
of meta-information; the loss is therefore implicit and hence irreversible without considerable human assistance.
Therefore, the more useful means to handling aspects is to cleanly separate the ontologies and define the means by
which the system combines ontologies in order to produce results addressing all the issues without loss of system
information.  In current systems, the provision via human-directed development of orthogonally independent semantic
models for the various aspect virtual machines addresses this issue of ontological separation.

In this model of programming, the appropriate paradigm captures the natural ontology for the domain in
question within a specification.  This specification intentionally leaves unspecified issues that do not directly concern
the knowledge level of the intended domain, such as storage management, execution speed, and communications
constraints.  Such issues should affect the translation of the domain ontology into working code.  One or more aspect
ontologies that address the process of translation between domains from orthogonally independent perspectives
explicitly handle those issues.

3.5 Intensionality
Intensionality is a term relative to extensionality.  The duality expresses the difference between systems

that implicitly maintain referential integrity in knowledge specifications and systems that rely on human intervention
to maintain the meaning of references, respectively.  Intensionality guarantees referential integrity by replacing
references to text identifiers with “direct” links (called hyperlinks).  This referencing mechanism effectively raises
efficiency of maintaining referential integrity within an orthogonally persistent system of relationships between code
fragments.  In this system, the user does not invoke first-order entities by simply specifying the name of the objects in
the code’s text, but instead establishes a link from the object invoked to the invocation site.  Critical to maintaining
such links is a system that can maintain these links upon transformations of the persistent storage system to preserve
consistency.  This opposes the relative inefficiency of a system that must parse text references, specify their name
scopes, and invoke a search-and-retrieval procedure to bring the referenced code in hand for analysis and integration
with the argument code.  An ideal example for this line of thought is that, within knowledge systems, the wish is to
distinguish “what I mean to use” from “what I explicitly state to use”.  The eventual natural extension of this process
is to distinguish objects by semantic specification, rather than denoting the product of an arbitrary action.  This
suggests that to establish the link, the system must search for an object with identical or similar semantics content.
However, similarities (considered as morphisms) may be numerous, as they should be within a system that models
many domains.  Strategies for addressing this characteristic should require a careful attention to the management of
pattern recognition.  A preliminary suggestion is for the system to posit a new independent object within the specified
domain and to establish morphisms later, factoring out redundant information as encouraged by an optimizing activity.
Morphisms also could be “multiplexed” through objects, yielding a simple generalization of the inheritance metaphor
in traditional object-oriented programming.

The work in progress on the Napier88 and TemplateNapier persistent hyper-programming language systems
best exemplifies research along these lines among programming languages.  Additional research in the field of visual
programming, and, more specifically, direct manipulation concepts therein provides ample evidence of the conceptual
simplifications for a computing system gained due to intensional interfaces.  The operational behavior of such systems
is often far simpler to understand and manipulate consequently.
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3.6 Incremental development
Incremental development is the application of fine-structure analysis to the logic of the evolution of a

knowledge system.  The progress of an agent toward defined (perhaps evolving) goals tends to create a lot of
information.  Traditional systems discard most, if not all, of this information, since the usability of the derived
information by other agents is severely dependent upon human effort.  Such a notion runs counter to the production of
a long-term information system or knowledge system, in that the information gained by analysis of a difficult problem
often yields beneficial results for other domains.  One can imagine an inventor working for years on some difficult
problem, and then, upon discovering the solution, throws out all of the unsuccessful attempts as though they were in
vain.  The utilitarian viewpoint suggests that all worthwhile effort be available in some form to others to avoid having
to duplicate something that may turn out to be vital in another field.

The current programming method to retain this information involves partial evaluation.  This scheme
consists of dividing the translation of a specification from one context to another into small incremental parts, as seen
by external agents.  The result is a structure of specifications arranged in a network flowing from the source context to
the target context, with all the specifications (and hence, contexts) available for reference, and hence for re-use.
However, the current computing tradition of specifying contexts manually in text-based interfaces tends to discourage
this re-use, since unique identifiers must be posited for each new information structure to be re-used.

Incremental development as a useful methodology applies to every domain of semantics.  For instance,
syntactical structures contain information in their sub-structures.  Traditional text-based programming environments
often redundantly encodes this information within many structures, as evidenced by contrast with the relatively high
compression ratios of adaptive sub-tree compression methods applied to source code in existing implementations of
the Oberon system.  High compression ratios in themselves are not a worthwhile goal; enhancing overall system
utility by maximizing information availability, however, is such a goal.  For the block-structured language Oberon, the
information in syntax tree structure is directly useful for performing very late optimizations, wherein run-time
information is available to the program specification structure for efficient, high-level code transformations.

3.7 Abstraction
Abstraction is a concept relating both to basic and model-level reflection.  Its domain includes the transitions

from first-order systems to their various types of meta-systems.  More generally, abstractions are those classes of
information transitions that result in factorization of the semantics implicit in a system.  They factor heavily in the
construction of useful loops of reflection, in that the semantics of the ‘output’ of the abstraction translation approach
the semantics of the knowledge level.  Ideally, decidable abstractions should link the domain to various ontologies in a
direct manner.

The classic algebra of abstractions, the lambda calculus as introduced by Alonzo Church, is a general
system of functional specifications.  While the notations of the lambda calculus involve the traditional variable-as-
state model for computations, the calculus itself is an abstraction over the syntactic formalism that yields an
intensional model.  Therefore, the ‘true’ form of the lambda calculus identifies lambda terms with equivalence classes
of formulae modulo alpha-conversions.  The intuitive idea of an alpha conversion is that the actual symbols used in
denoting the bound variables in calculations (atomic actions) are irrelevant to the meaning of a lambda term, allowing
arbitrary re-assignments that obey basic laws.  This is in contrast to beta reduction, which considers the free variables
for re-assignment; such a model limits the lambda form from applications to typed logical atoms.  For example, the
natural (informal) lambda formalism for expressing the sum of two integers is essentially λxy .(x+y) , where the
variables x  and y  are bound for the term and lose their symbolic character according to the lambda calculus.
Logicians term these bound variables as alpha variables.  They constitute the first-order level for the context
introduced by the lambda term.  In this way, what remains of the variables in the term is merely the concept of
preserving the flow of information concerning bookkeeping.  The interpreter merely must refer to the first input
variable for the first term of the sum and respectively for the second.  The free variables of a lambda term are those
defined by the context into which the agent posits the lambda term.  Logicians term these free variables as beta
variables; they constitute the state of the information of the parent context.  In this way, ‘actual’ lambda calculus
consists of the study of lambda terms as described, modulo beta-reduction, so that the relationship of a functional
specification to arbitrary contexts is the essential subject.  In the example given, the lambda formalism merely maps
the addition operator into the space of lambda terms.

The result of this abstraction process is a functional metaphor for computations that is intensional in
meaning.  As such, the lambda calculus is a highly attractive formalism for expressing most abstractions.  Few
implementations, however, completely achieve intensionality from the user’s perspective.  Furthermore, many
undesirable assumptions linger in present systems due to the constriction of the domain by the system developers.
Church and others who initially considered the properties of this functional theory were only concerned with
formalizing the theoretical capabilities of the kinds of systems that extant computing systems emulate.  The lambda
calculus is a formalism that identifies in its domain all finite recursively-definable functional structures.  The practical
significance of a formalism that can distinguish those algorithms of which a finite-state machine is capable cannot be
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over-estimated.  However, this formalism simultaneously fails to express those algorithms of which modern machines
are incapable.  The assumptions used by Church and others to formalize the system’s model express this limitation
well.  These assumptions limit the domain of application strictly from describing non-calculable structures, which a
modern information system encounters quite often in its work.  Because of these limitations, the lambda calculus
alone is insufficient for knowledge systems as described above, in that human-reachable structures will be quite
unmanageable.  (Notice that the goal is for the machine to assist the human-reachable tasks by managing the
information involved, not actually attempting to perform such tasks as specified.)  Even among less capable systems,
it seems useful for the system to express to the user when it cannot handle some type of action directly.  However, the
computer system should make itself available for discussing various aspects of actions that it cannot complete, and to
manage the information gained as knowledge.

Note that the lambda calculus employs the intuitionist logical model for context structures.  This is no mere
coincidence.  Lambda terms are famously identified by Church as the effectively calculable functions with the
intuitively computable actions of a machine with atomic (non-recursively divisible) actions.  Since the generally
recursive functions are equivalent to the set of lambda-definable terms, it then follows that lambda terms model
exactly those computations (actions) of a finite atomic nature.  Church's famous thesis (Sieg, 1997) identifies those
computations with the recursively definable computations, which the intuitionist logic models precisely.  However, a
model-reflective system’s intended domain easily exceeds the actions that it may take, since the system must model at
least its tasks, which are human-directed.  For humans, the concept of an action that is recursively dividable is as
intuitive as the conceptualization of continuous motion in space, since logically, transitions in spatial position are
divisible into infinitesimal units.  It follows that they naturally overlook the difference between intuitively
conceptualizable and intuitively definable for calculations.

As an algebra, it has difficulty expressing important human-level activities, such as instantaneous pattern
recognition and conditioned responses.  Moreover, it seems natural that a model-reflective computing system should
understand the operations of what constitutes user-interface in modern graphical interfaces: the abstraction from a
bitmapped display of information presented by the software system.  If a system can prove that its graphical interface
processor communicates information in a way intuitive to the user’s ontology, then it can modify that interface in a
way that preserves those properties.

General-purpose equivalence class notation (i.e. at every abstraction level)

Current systems lack the ability to express ontologies as first-order vocabularies for domains coherently and
to allow for ontological crosscutting in a clean and safe manner.

3.8 Primitives
An overriding characteristic of current-generation software systems of any kind is the implementation of

standard mathematical and logical structures as primitive objects.  The advantages of having the standard numerical
calculation system available as a set of first-order constructs are obvious, since they allow the environment designer to
provide relatively direct access to the capabilities of the underlying hardware.  However, the distinct inability of these
systems to immerse the context in other mathematical or algebraic systems makes obvious their limitations for dealing
with information structures in general.  Furthermore, such a system historically leads users to cling to direct control of
the machine, and for developers of the systems to respond with fewer improvements in the area of abstractions.  The
overall result expresses the limitations in utility of common software systems and their immediate derivatives.

To that end, software systems should enable agents to encapsulate arbitrary models of various formal
objects.  For instance, a system that understands the mathematical concepts of 3-dimensional rotations and translations
can use this knowledge to build algorithms that manage this process for the user in an abstract way.  However, if the
system derives this ability from primitives, not structures thereof, then the generalization of 3-dimensional geometry
to space-time geometry or Riemannian geometry will be unattainable unless other constructs compensate in their
abilities.  This limitation coerces the system user into managing the entire conceptual and resulting procedural
framework due to any new domains the user would introduce.  The utility of the abstract form of the models is that
such models translate to various hardware and software architectures in ways that the software can manage
automatically.

This lies in direct contrast to modern systems where the most abstract of mathematical systems, the symbolic
algebra systems, encapsulate as their highest-level symbols of abstraction the countably-complex vectors with
combinations of elementary mathematical operations over them.  Furthermore, those systems fail to encapsulate those
symbols at a first-order level, and thereby limit the changes available for the fundamental model to those allowed by
intuitionistic logic.  Even those systems are insufficient to reify or abstract any notions built from equivalence-class
creations or morphisms.
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3.9 Finite size
The intuitionist virtual machine’s internal state can be characterized by a finite but unbounded stack and a

single register for manipulating that stack with respect to a pool of random-access data known as the heap.  The
unbounded assumption is just included for simplicity of the axiomatic definition for the machine.  The uniqueness of
the stack is irrelevant as well, since modern systems using multiple stacks only achieve a faster implementation
instead of higher-order modeling capabilities.

There are two essential assumptions that exemplify the limitations of the model.  First, only a finite number
of objects may be on the stack at any time.  Also, any atomic action may add or remove only a finite number of
objects from the stack.  If the model for the system uses the second assumption, the addition of a simple assumption
allows the derivation of the first.  Namely, if actions are not recursively divisible without limit, then it we may easily
derive that an agent may ever perform only a finite number of actions, and hence that the size of the stack will always
be denumerable.

From these two, we can infer that the system would not consider programs those sequences of atomic actions
that are infinite in number, since this would allow violation of the finite stack-size principle.

If the context includes an arbitrarily infinite size stack, then the stack can no longer be indexed by an integer
register.  The register for such a device would therefore be a state machine of arbitrarily infinite cardinality in order to
maintain the indexability of the stack.  The semantic system that results is necessarily one that can index its own
complexity in terms of itself.  This also allows effectively random access to the internal state of the machine.  It
follows that the semantic model of the stack system does not permit the use of infinitary extensions.

A simple axiom of infinity also allows us via standard logic to provide the system a framework for
discussing the decidability of properties of objects.  This is useful in allowing the information system to recognize and
reason about the limits inherent in its various substrate devices (particularly digital logic microprocessors).  It follows
that if the system can recognize those limitations as first-order entities, then it possesses a means for avoiding
traditional logic faults in software systems, commonly known as deadlocks.

3.10 Model-Level Properties
Tasks for the system are states that agents modeled but cannot or have not constructed.  Examples of this

category of knowledge for a model-level reflective system include input from the user, the management of an infinite-
state device, and all data from “unreasonable” sources.  Traditional systems cannot manage the information provided
by such domains, and therefore fail to overcome complete reliance on the user for much of the information necessary
to construct and maintain the system.  Hence, systems that cannot support general-purpose model-level reflection will
not succeed in terms of overall utility for society.

The scheme for implementing the notion of a model-level description of the system is as follows.  The agent
is the information system as a whole or taken as a consistent part.  The agent’s models consist of the interaction of
collections of information atoms.  The agent’s methods include the functional semantics that the construct can
provide.  The agent’s tasks are actually models of the desires of systems with which the reflective system interacts, but
does not fully understand.  The constructs used must be broad enough in scope to achieve this range of interpretability.

4 The Proposal
This paper intends to present a cybernetic system that fulfills all the stated requirements for an information

system that provides system-wide model-level reflection, as well as the properties necessary to manage a complete
knowledge system.  As such, it should provide an excellent substrate for the development of artificial intelligence
prototype systems, including expert systems and knowledge bases with a far greater utility than conventional systems.
It also trivially supplies the means for a unified system for computing systems with high utility and an appropriate and
adaptable conceptualization system.  The goal is a unified system capable of modeling any concept, including those
that reflect on the system domain.  Pragmatically, the system may also serve as an inter-system translator for the
various types of information stored on modern software systems, using a notion of arrow definability of information.
In this way, much of current informations systems and their content would be available for re-use by any Arrow
system that models them.  It should be clear that the system should support the advancement of the sharing of
information and knowledge in terms of human-interested utility in as much as the necessary implementation allows.

4.1 Basic Metaphor

4.1.1 A Binary Relation
The system is a specification of atomic relationships (called arrows) between objects that are themselves

arrows as well.  The translation of the notion of a logical binary relation is therefore a set of arrows.  This yields an
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expressive capability that easily rivals the relational algebras of mathematics.  The system enables a function type by
specifying a left-deterministic relation, allowing arrows to be composed into functions as well.

This yields a constraint-based or axiomatic programming construct.  The total set of constraints by other
arrows that applies to a given arrow constitutes its definition.  However, the constraint metaphor provides an arbitrary
abstraction level, since any object that the system can postulate is available as an arrow for declaration of constraints.

Although the system provides the metaphor of relational declaration, we can see that the world of arrows that
an Arrow system will implement has a far greater capability than those standard systems of specification.  For
instance, within a complete information system built from arrows, each arrow is available for statements constructed
by other collections of arrows.  This property enables arrow models to build the definitions of objects constructively
and incrementally.

The system that does these things functions quite differently from ordinary computing systems.  Its base
semantic paradigm constitutes a reasonable theory of information atomicity in terms of cybernetics, although it is
trivially recognizable that these information atoms are far from indivisible in the ordinary sense.  As shall be shown,
the ability to identify these atoms of information with arbitrarily posited patterns of other atoms results in the ability to
crosscut ontologies in first-order ways that are often calculable.  In this way, the system easily reifies, studies, and
manipulates the mental process by which users ordinarily build information and knowledge systems.

This lies in direct contrast with the de facto standard for information atomicity, the bit .  The bit embodies the
von Neumann state-space architecture rather succinctly, and as such is limited from many of the higher-order
abstractions of which arrows are capable in a meaningful way.  More specifically, the bit concept generalizes to
spaces of necessarily enumerated states, so that the concept assumes a linear ordering and denumerability among its
first-order atoms.

4.1.2 A Homo-iconic System
Any application of arrows to other arrows constitutes model-level reflection.  The arrow construct itself

forms the basis for reflection via object-level / context-level distinction.  This common construct has such little
semantics implicit to its definition.  Therefore, though much information that agents would considered unreachable
because it is sub-structural or crosscutting to the model specified by the semantics of ordinary languages; it is reified
easily in this new system for first-order reuse.  This allows the Arrow system to act as an effective meta-system
language providing inter-language translation up to the limits of computability via a uniform modeling mechanism.

Although the arrow construct may be intuitively seen to model transitions of information between languages,
it also provides an additional metaphor, since the “nodes” representing the pair of languages (actually, state-machines)
in the translation are actually arrows themselves.  These node-like arrows again model another information translation,
since a language represents an interface between systems.

4.1.3 Not a Language
The Arrow system blurs the distinction between context type and other types.  Essentially, the system

renders all types in terms of arrows.  Only a context can yield meaning for a given arrow.  Such a context is due to a
type of abstract virtual machine built dynamically by the environment from the specifications of ontologies.

A natural view for the Arrow system involves generalizing the notion of a hyperlink to include all
invocations (and references) both above and below the first-order level of a given language.  Therefore, all code
consists of structures of hyperlinks, individually reified as arrows.  The result is an abstract diagram that mirrors data-
flow in its interpretation, since it links the first-order objects of an ontology (for, say, a programming language) to
their invocation points.  The structure relating the invocation points is an abstract version of a syntax graph, which
again agents may easily construct from arrows.

The semantics of an Arrow system specification will have a functional character itself (mirroring the
intuitive interpretation of an arrow as an ordered pair specifying a function or a lambda term), to provide a clean way
to produce correctness verification.  If presented with a sequential representation of an arrow specification, the system
should separate the information inherent in the sequential form, unless the agent states that the form contains
information used by some part of the system.

4.2 A Simple Construct
The simple visual concept of an arrow is a directed link between two points.  This simple visual metaphor

should aid in representing the state of the system and its parts in an easily understandable form.

A formal metaphor for specifying arrows should consist of viewing arrows as data structures with exactly
two slots that are ordered.  For the sake of convention, this formalism denotes the first slot by “0” and the terminal slot
by “1”.  This suggests a C-language ‘struct’ syntax resembling the following: “A={x, y}”, so that “A.0=x” and
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“A.1=y”.  However, the preferred method for representing and specifying arrow incidence relations is by intension; by
factoring out the necessary text-identifiers from a textual specification, agents may achieve such an abstract level in
their models of arrow structures.  In an interactive system, however, the ‘natural’ state of system interaction would be
solely intensional, with text-laced interfaces overlaid for ease of use only.

These slots can only contain references to other arrows, but a slot cannot contain a reference to another slot
directly.  In this way, all arrows lead from arrows to arrows, not to or from an arrow’s head or tail.  To implement the
case where an arrow’s head points to the location of another’s tail, one must instead have both slots refer to a third
arrow that acts as a node with respect to them.  A reference may also be ‘empty’, that is, containing a reference to
nothing.  Note that the semantics of the system would be identical if empty references were disallowed, given that the
environment simulate the concept by replacing empty references by references to a ‘unique’ arrow with no intrinsic
meaning.  Such a simple reification as this suggests the immediate utility of context shift for a system of arrows.

4.3 Graphs
The natural ontology for viewing the Arrow system consists of collecting arrows into various groups.  Some

kinds of these groups are similar to directed multigraphs of arrows and nodes as in mathematical graph theory.
Graphs are not intrinsically special types in the Arrow system, instead merely collections of arrows.  As such general
abstractions, they constitute a natural construct for reflection among arrows.  In this way, the user can apply various
abstraction schemes to collections of arrows as basic derivatives of set theory.  Since arrows model declarations in
traditional specification languages, this action can work at the model-level.

In mathematics, a graph is a way to specify the relationships between selected objects viewed as nodes.  In
the Arrow system, the nodes are really other arrows within the system.  Taking general relational algebra or category
theory as the logical system, each graph corresponds to a relation.  In this way, the natural theoretical view of a graph
is as a set of arrows, per modern set theory in formal logic and mathematics.  (To be accurate, the most natural view
takes Fraenkel-Zermelo set theory to be the fundamental model for the system from the viewpoint of first-order logic.)
It should be clear that the nodes of the graph, that is, the arrows referenced by the relational atoms, do not necessarily
belong to the graph, although there is no inherent restriction on the references an arrow may contain.  Therefore, an
arrow of a graph may reference another arrow within that graph.  We shall consider graphs of this nature abnormal, in
that they do not respect the relational metaphor cleanly for first-order systems.  Graphs constitute reflective-order
relations, since each arrow represents the application of a relation symbol to an information atom, and interactions
between these relation invocations constitute a higher abstraction level for the relation.  In this way, an arrow that
references itself as an information atom results in an unlimited recursive application of a relation.  Curiously, if the
arrow refers to itself as a relational atom, then it generates a recursive application of an anonymous, meaningless
function.  Such graphs may generate contradictory specifications unless the creative agent pays close attention to the
relationship between the first-order and meta-systems specified by such a graph.  In addition, a graph may actually
contain arrows with empty references, as well, so that the arrows of the graph may be “dangling” or “free-floating”, so
to speak.  These “degenerate” graphs are certainly useful although agents find the relational metaphor contradictory
via standard first-order logics.

Graphs may also represent featureless sets, viewed as a graph of nodes in category theory.  They correspond
to meaningless relations, if agents impose the first-order relational metaphor, since they consist of arrows with empty
references only.  Note that the usual notion of a graph still falls under this interpretation, since all are merely
collections of arrows.

The system may group arrows into graphs in completely arbitrary ways.  Many graphs may contain a given
arrow.  Arrows may contain references not only to nodes, but also to other arrows within the graph.  Only an interface
to the system may provide restrictions on the methods of grouping.  These interfaces’ algebras are constructible from
within the system.  These interface algebras constitute a system for building ontologies from existing information.
Since our grouping mechanism is completely unrestricted, the ontologies that are possible in the system may crosscut
each other, as well they should!  In fact, the design of the Arrow system should encourage the use of crosscutting in
order to maximize information availability for the system, such as reifying the most attributes possible over a
collection of objects.

Taking the relational metaphor as a basis for construction, the grouping mechanism can be modeled itself by
a set of arrows.  These arrows model atoms of information regarding the set-membership relation “∈”.  In this way,
the representation of a set in the Arrow system treats both the set and the elements as the nodes of a graph.  The
arrows of the graph all lead either from the elements to the set in question or vice versa; the issue of arrow direction
per relational model is arbitrary as long as consistent.  In this model, the statement “x∈y” identifies with a (possibly
unique) arrow leading from ‘x’ to ‘y’, stated as “{x, y}” or “x→y”.  Notice that this notion primitively reflects on the
model of the simple abstraction mechanism, the graph.  The construct thereby enables arrows to contain references to
graphs themselves.  This concept generalizes to a scheme that can reify any concept as the node of a graph.  To begin,
imagine that for every graph there exists at least one meta-graph: a graph that describes the original, in terms of set
theory in the present case.  This graph maps the relation symbol to its invocations in the original graph; for each arrow
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in the graph, there corresponds exactly one arrow in the meta-graph, termed a meta-arrow.  The meta-arrow for the
original arrow in the graph would be stated as “{∈, {x, y}}” or “ ∈→{x, y}” or “ ∈→ (x→y)” equivalently.  Note that
for each meta-graph, there exists a further meta-graph for that graph; notice that the resulting extensional structure is
an infinite recursion process, which is often termed meta-regress in traditional systems.  This process evidences the
need for an axiom of infinity to conceptually distinguish those constructions that the system should implement lazily.
Note also that this abstraction is by no means the only type of meta-instantiation possible; it is merely the simplest in
terms of conceptual separation.  In fact, we may describe any graph within a coherent Arrow system as the meta-graph
of all the graphs containing arrows referenced by the arrows in the original graph.  In this way, the degenerate graphs
described are reflective graphs, being graphs that crosscut the usually traditionally clean separation between the meta-
and first-order levels.

This is not to say that arrows must always be explicitly instantiated in order to construct a relation.  It merely
suggests that relations in the Arrow system consist of indivisible information atoms, which are arrows.  If an inference
system exists for dealing with arrows, then the extant relations applying to a given 'node' could define a new relation
in target domains.  The existence of an arrow as a member of this axiomatically defined relation could be determined
dynamically.  In this way, relations that apply to an uncountable number of objects could be implemented effectively
and retain ‘arrow definability’ for a finite store.  This technique is hardly novel.  Many existing systems employ this
idea of evaluating the structure of objects only on demand, known as a lazy evaluation strategy.

Finally, it should be clear that graphs considered as isolated entities would mean very little to a knowledge
system.  The modeling capabilities of graphs encompass their entire purpose in an information system, so that the
system would naturally maintain links between models and their intended subjects.  Furthermore, a graph within the
system has very little meaning if it is ‘bare’; that is, if its arrows are not annotated by some structure that develops the
meaning of those arrows.  As an example, consider figures one and two below, which depict the diagram for a state-
machine and its syntax-level abstraction.  The extension of the graph of the automaton to its syntax graph (reifying
basic arrow-level relationships in the first diagram) represents a shift of information content from the text identifiers to
arrow structure.  The system extends this shifting process to encompass the information that is textual even in the
syntax graph, until all the information necessary for the system to encompass semantics of the diagram exists in terms
of arrows alone.

4.4 Logic
The logic of arrows as expressed here has only been analyzed in the last decade as part of the larger field of

logical research that intends to explore the various types of logics between full first-order predicate logic and the less
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expressive, though decidable, minimal modal logic (van Benthem, 1996).  Arrow logic explores the notion of the
definability of processes and information transitions in terms of these logical atoms.  The logic of arrows is actually a
family of logics whose atoms may or may not be associated with ordered pairs or tuples of points.  Note that the
Arrow systems as presented here fundamentally differs from the current subject in logic in that the underlying nodes
in Arrow graphs are also arrows that are subject to inclusion by any graph in the system.  This yields both homo-
iconism and a clean mechanism for reflection by the system at all levels.

The fundamental notions of arrow logic involve some simple predicates over featureless logical atoms called
arrows.  Just as in the Arrow system, these objects fundamentally represent specifications of binary relations.  The
three canonical predicates specify identity, inverse, and composition relations over those atoms.  Arrows themselves
may be thought of as corresponding to ordered pairs over an underlying space consisting of states (viewed as nodes)
with the arrows representing the allowed transitions in the system.  However, the idea of “pointless” arrows is just as
valid a model.  The fundamental notion of a collection of arrows, known as an arrow frame, corresponds precisely
with the introduced notion of a graph in the Arrow system.  The reason for the shift in terminology is to effect a
different point of view on the utility of arrows and the modeling capabilities they engender, and to clarify the
difference between ontological frames and arrow frames.  Current research practices consider arrow frames in
isolation, whereas the graph is intended to be an atomic module of information for a new class of high utility
computing systems.  As such, the primary focus in the design of these information systems involves the interactions
between the graphs, since they constitute the refinement of information within the system until it approaches the level
of knowledge.

<< Decidability, axioms, modalities, and stuff (i.e. get material from the books on logic!) >>

This range of semantic flexibility achieved <<>>

As for arrows in particular, the fundamental relations considered of interest for the Arrow system to extract
and describe information from arrow collections are the three canonical relations, the incidence relations, and the
reflective relation, specified as follows.

4.4.1 Canon
These relations describe the essential features of arrows only from the perspective of the usual relational

metaphor, without regard to the internal structure of arrows.

The identity  predicate applies to all arrows whose endpoints are identical, represented in this way:

The inverse predicate applies to pairs of arrows whose lists of endpoints are identical when reversed.

The composition predicate applies to arrow triples where the vector addition metaphor applies to the first
two to yield the third.

4.4.2 Incidence
Incidence relations depend upon the structured view of arrows, which is the model of arrows implying

association with ordered pairs over an underlying state-space.  These relations express the possible combinations of
relationships between arrows and the objects to which they refer.  Again, these assume a clean relational metaphor.

The incidence relations

The coincidence relations

4.5 Categories
The mathematical notion of a category relies directly on the directed multigraph construct, just as the non-

degenerate graph does in the Arrow system.  It naturally follows to point out the similarities and differences between
the two ideas, particularly considering the logical and modeling characteristics.

Categories assume a fundamental difference between the notion of arrow (as morphism) and node (as
object), so that the theory of categories cleanly separarates the notion of system and meta-system by restricting
categories from crossing that boundary.  In category theory, the arrows and nodes are fundamentally different types.

Within categories, the notions of identity, inversion, and compositions of the arrows are central to the model,
as they are to the Arrow system’s central logical model.  However, categories operate within the context that all
arrows in the correct configuration compose, whereas the fundamental issue for composition within the Arrow system
is whether (or where) arrows compose to form logically valid relational atoms.  Furthermore, the Arrow system does
not assume associativity of the composition relation, except with respect to identity arrows.  However, both systems
regard inversion as a subject for logical analysis.  The main reason for the differences lies in the fundamental
metaphor for the node concept between the two systems.  Within categories, nodes describe strongly (or trivially)
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typed logical atoms, that is, that internal form of a node defines its meaning.  The Arrow system, on the other hand,
considers nodes to simply be the subjects of informational atoms, and to have no inherent meaning.  The Arrow
system constructs of meaning on its own.

Now, the modeling benefits of categories are very extensive, in that categories easily encapsulate many
functional paradigms as well as the majority of intuitive structured processes, including the typed lambda calculus.  It
therefore seems rational to ‘implement’ categories using arrow constructs and include the relations it defines among
its structures as graphs with implicit meaning.  In logical research, this implementation already exists in terms of
categorial grammars for arrow frames, allowing the analysis of the models that categories produce.

4.6 Multi-Arrows
Another concept for the Arrow system is the basic notion of chaining together arrows, providing arrows with

arbitrary numbers of references (even infinite numbers).  The basic metaphor for an N-reference arrow (or a multi-
arrow  or N-arrow ) is a relation over N-place tuples of objects.  It reifies the basic computational result of currying.
This allows a simple system of arrow types for expressing logical structures of greater complexity over the base
system of (2-place) arrows by a relatively simple reification operation.  This mechanism even allows for the simple
reification of the graph notion using multi-arrows only.  Since a graph corresponds to the usual notion of a set, the
notion of a collection facilitates the remaining discussion.  A collection in the Arrow system is a graph of references to
the members of a source graph, so that we have an unordered group of (possibly repeated) references to some unique
objects.  Similarly, sets are collections modulo repeated references.  An agent in this context may consider the graph
for a collection of arrows to be the equivalence class of all multi-arrows with references to exactly the members of the
graph, modulo the full linear ordering of the references.  (The visual modeling of the meaning of previous sentence
within the Arrow system is left as an exercise to the reader.)  Paradoxically, the definition for multi-arrows may derive
from the notion of a collection of arrows, over which a relation specifies a linear ordering.  The duality of these
viewpoints is desirable and exhibits the natural ability of the Arrow system to support ontological relativism in a
simple manner.  It also exhibits the suggestion that the cardinality of multi-arrows be as unrestricted as is the usual
notion of a set.

As for implementation, any abstraction mechanism that exhibits the same characteristics as a multi-arrow
will do.  For instance, if the domain in question consists of graphs of Lisp-like linear lists of references, then it
behaves as a multi-arrow environment.  These lists are simple to construct given the isomorphism between the arrow
primitive as an ordered pair of references to arrows and the Lisp construct of an ordered pair of pointers.  Since a set is
actually a graph of the set-membership relation, each set is available for reference as the source node of this graph,
allowing multi-arrows may contain references to other multi-arrows.  Upon this structure, an agent may posit the
desired relational structure to elaborate the issues for discussion.  In this way, an entirely new ‘primitive’ context
arises from a simple scheme of graphs.  This new context behaves as an isolated environment with respect to its own
relationships and constraints.  However, it also can model the environment used to create it, using information-
theoretic proofs about the context of two-reference arrows, and thereby reflect upon it.

Note that this new context includes multi-arrows with both zero and one references.  This allows for
increased expressivity concerning the original context of arrows with two references only.  A zero-reference arrow
represents an effectively empty statement, true in all cases, while the single reference arrow reifies the references that
arrows contain as a first-order atom.

<< Elaborate on the generalization effects on the logical arrow relations.  >>

4.7 Contexts
Arrows rely on variation in context for meaning.  However, variation in context is not under the state-update

von Neumann permissive model or its derivatives.  The system may and shall provide the simple dynamic semantics
of the functional paradigm as well as the clean semantics of declarational specification.  In this way, an ontology
specification introduced to the system results in the incremental modification of the current knowledge base until the
state of the system realizes perceived ontology.  Because of this, agents can manage the interaction of various
ontologies in a manner heretofore unattainable.

The general paradigm for using arrows as a tool for modeling information and knowledge systems involves a
relational metaphor.  In the Arrow system, we would identify a binary ordered relation as a set of arrows.  One arrow
of the set represents the affirmative result that the relation applies to an ordered pair of objects.  The nodes connected
by the arrow are identical to the objects considered.  A simple system of relational algebras allows the description of
arbitrary kinds of relations between objects.  The notions of relational inversion, composition, and identity enhance
the expressive power of the arrow metaphor.  Since the Arrow system allows infinite numbers of objects, the system
may express the characteristics of very large domains.  Examples include number theory where the natural, integer,
rational, real, and complex number systems form an intricate and useful structure for a knowledge system.
Morphisms, acting as metaphors, may be constructed, allowing the system to represent any large systems similar or
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measurable by these numbering systems.  In this way, the system may manipulate and understand any formal
symbolic theory.

Since we may build any conceivable single relation, we may assume that the interaction of these relations
would produce a declaration-based system of description for first-order objects.  In this way, an external definition of
an object develops incrementally and constructively, using the same methodology as a theoretician would in
formalizing the notion of a system.

However, this metaphor has more power than the previous description suggests.  Since the Arrow system
possesses a very simple, clean “underlying layer” of semantics, agents need assume very little in the logical structure
of the system’s substrate.  This allows the Arrow system to delve into areas of reflection previously unattainable by
current programming and knowledge-modeling systems.  For instance, within current systems, the system’s designers
enumerate the types of reflective actions that agents may take.  The system therefore does not achieve the necessary
level of reflection in order to overcome these inherent limitations; one can imagine a “reflection barrier” beyond
which the capabilities of software systems could grow quickly with minimal human involvement.  The Arrow system
design intends to transcend this limitation in current reflective capabilities by fully supporting the principles of
ontological relativism at a first-order level.

Arrows create contexts constructively in our system.  Since the primary metaphor for arrows is the
declarative specification of a binary relation, it seems natural to use binary relations to specify the rules and axioms
for a logical system.  The remaining necessary construction consists of an evaluator that obeys those rules of inference
and axioms of specification to yield results to a querying agent.  However, though an evaluator must exist for every
new context, by no means should agents consider evaluator-ontology pairs unique for a given ontology.  In this way,
the common bulk of the system will guarantee and avoid unnecessary restrictions to information accessibility to a
particular idiom.

A lack of restriction on the types of evaluators permitted to access ontologies should provide a wealth of
semantics.  For instance, one could consider a graph over ontologies, considering ontologies as nodes, and the arrows
between the nodes as the evaluation methods between them.  In this way, a system actor can sequentially combine
evaluators to produce new evaluators for any ontology in the system.  This notion is conceptual generalization of the
mathematical notion of a category.

<< Insert ontology transition graph here.  >>

<< Nodes: hardware machine-state language (internal and peripherals in both state-space and time), ASCII
text, assembly language, high-level languages, operating system or virtual machine state language, interface
specification languages, graphics display interface languages, drawing primitive languages, user interaction ontology
language, and more.  >>

<< Arrows: interpretation, compilation, assembly, reverse engineering, and various representations.  >>

It is very interesting to note that the construction used in the diagram consists of arrows, providing the first
of many examples of the utility of the construct.  In addition, the Arrow system may obviously use this diagram to
model and manipulate itself and its processes, since it provides a set of first-order handles for identifying and invoking
these information translation services.  This ability forms the practical beginning of model-level introspection and
intercession.  Not only is the graph and its implicit structure available for first-order analysis, but also the system may
augment this graph by positing new ontologies or even splitting and joining ontologies in arbitrary ways.

As can be seen, the generated system of abstraction does not promote the metaphor that it provides
abstractions in arbitrary “layers” above some substrate state-machine.  Instead, abstraction is now an action taken in
arbitrary “directions”.  In the new system, the substrate state-machine is merely a new specification of an ontology,
and evaluating some specification in terms of the state-machine ontology provides “execution”.  The system may
provide evaluations in the direction “opposite” of the execution directions, with various semantic meanings.  For
instance, an evaluation from one hardware context to another fits into this model, and is often decidable; witness the
utility of emulation software for prototyping hardware and porting software between platforms.  However, evaluations
may also be proposed wherein high-level pattern recognition is required, such as the traditional idea of “reverse
interpretation” between programming languages, which is undecidable in general.  Note that the system can easily
encapsulate such an action, though modern hardware may be unable to perform the action or some of its parts as
specified.  Note, however, that currently the state of hardware research is rapidly exploring the possibilities of devices
that perform calculations far beyond the conceptualizations of Church and Gödel.  The data introduced by such
devices are obviously untenable for analysis by current computing systems in a useful way, evidenced by the
specialized nature of these devices’ interfaces and the lack of a coherent theory for abstracting upon that data.  It is for
these devices as well as for humans that the Arrow system design intends to serve.

This graph may also apply to traditional systems.  Modern systems deal with a restricted subset of the
diagram used above, whereas the Arrow system shall model arbitrarily specified new arrows and nodes.  To represent
this restriction, it must make obvious the parts of the graph which traditional systems represent, and those that they
ignore.  Traditional information and knowledge systems focus on a finite set of “high-level” nodes representing
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program code representations and standard data protocol representations (encoded within the code representations).
The arrows concerning traditional systems are at most those extending through that central set of nodes via all other
available ontologies, so that they constitute the direction of implementation.  The vast majority of modern systems do
not even appraoch the limits described here.  Such systems also express those arrows that implement ontologies that
are “more abstract” than the base set.  The most general-purpose of these systems are the homo-iconic systems
wherein those arrows extending from the central sources of abstraction constitute all possible information
transformations.  Computer scientists refer to such systems as exploratory in nature, in that they make available all
ontologies to the user in meta-order form, via first-order specifications of implementation.  The parts of the system
labeled “reflective” constitute the system implementation.  As such, the user necessarily performs part of the
representation of the periphery ontology as he or she reads the code.  Notice that the notion of such systems
traditionally assumes the “star pattern” which this discussion elucidates, and that this pattern is isomorphic to the
notion of a hierarchy.  It therefore constitutes an explicitly limited domain of information management.  The other
possible information transitions are not available in this scheme, even if they represent computable translations of
information.  Furthermore, the system only makes available the static set of central abstraction ontologies for first-
order use, that is, implicitly requiring that the system multiplex implementation through one or more of the central
abstraction ontologies.

<< Insert the modified graph, highlighting the “star” configuration.  >>

<< Also, note the multiplexed implementation routes from specification to implementation.  >>

This formalism for expressing the contextual expressiveness of modern information systems suggests a proof
(both cybernetic and topological) of their limitations in terms of utility due to their inability to modify the central
static set of ontologies.  Such a modification would thereby express ontological relativism at a system-wide level, and
enable model-level reflection.

Using the concept of a graph of information transitions over ontologies, it seems natural to propose the
following model for context management.  Constructive specification from within an existing context helps create
new ontologies, and therefore contexts.  Arrows represent the generated ontologies within the diagram, as suggested
earlier by the definition of an ontology.  Other arrows link the arrow in the ontology graph to the ontology’s
specification, contained within the target domain.  Since ontologies represent processes of translation (or
interpretation) of information in the source domain, multiple arrows may exist in this diagram per pair of contexts.  In
addition, an intuitive idea is the use of sequential composition of ontologies, which would provide a combinator for
generating new ontologies via the analogy of vector composition.  Such an operation represents the gluing together of
ontologies to extend the accessibility of information among domains in an automatic way.  An agent may inspect this
operation for its properties in preserving information as well as its characteristics for maintaining consistency among
domains.  Potentially, an agent may even construct inverse ontologies that provide reversal of information
translations; this is easily possible if the original translation results in no loss of information.  If the inverse of a
translation requires no extensive pattern recognition of the underlying hardware, then such an inverse is calculable as
well.

What results is a natural system for expressing domains and ontologies within the frame of graphs.

4.8 Meaning
Meaning describes the dynamic effect of information received relative to the current frame of knowledge.

Similarly, truth within a system of logic is local to a knowledge frame.

The means for creating an ontology within the Arrow system entails an understanding of the means for state
machine construction within the Arrow system, to enable the understanding of the state machine concept within
ontology descriptions.  State in traditional systems implies that a certain valuation exists for the variables of the
machine.  Well-defined machines have variables whose allowed values satisfy certain constraints.  For instance,
standard computational models include as their basic variable types the register types of the underlying hardware
architecture.  Note that the Arrow system design intends to model all of the conceptual levels of a system.  By
including the entire model of a type as a first-order object in the system, variable assignment consists of arrows that
“select” the appropriate element from the structured set of possible values for the type.  That set constitutes the
extension of the type in the usual terminology.  The means for predicating the type of an object is the use of an arrow-
style mapping of the kind just introduced from the object to the intensional (axiomatic) description of the type.  The
creation of a type system then enables the construction of arbitrary state machines, which formally specify a language
identical to the state-space of the machine.

From this beginning, the means for ontology construction consists of specifying a set of nodes that form the
constructs for a contextual vocabulary.  The relations that directly refer to a node of this set are those that help define
it.  The closure of specification due to relations that refer only to nodes in the argument set is the ontology of the set.
From this method, an agent may create all kinds of specifications whose entities are available for use by any object in
the system.
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Meaning is relative to context as well.  The system handles this concept by means of ontological
crosscutting.  The Arrow system provides the crosscutting of ontologies trivially, since ontologies consist of fine-
structure constructs, which inherently observe no arbitrary laws with respect to composition.  It follows that structures
built from these constructs are available at a fine-structure level.  Therefore, crosscutting is trivially impossible, since
it implies an identification of information between ontologies that violates the atomicity of the structures involved.
Even infinitary or recursive structures are similarly available for identifications, allowing crosscutting to occur for
domains whose internal structure is quite complex.  Using this ability, the user can model a domain in any way he or
she chooses and retain the ability to translate to any other model of any domain, including those of the same domain.

Some definable systems have no inherent capability for a truth concept; such properties of those systems are
as local as the meaning of the terms of those systems.

Agents may compare the ontologies determined by frames.  A simple metaphor for the inspection by the
system of an ontology considers the state of a person’s mind as it peruses a dictionary entry.  As an analogy, the
ontological frame would describe the collection of subjects in which the person is currently interested and the person’s
current state of knowledge concerning them, both of which are dynamic in nature.  The references made by arrows in
the graphs of the ontologies would mirror the words used in the definition statement for an entry.  In addition, one
knows from general-purpose dictionaries for common use that often multiple entries exist for the various uses of a
word.  The Arrow system mirrors this concept in a far cleaner manner, since such rules of term usage apply based on
the context used by the speaker, with term meaning distributed among ontologies.  In the Arrow system, agents make
the choice of context constructively (whether explicit or implicit), and the terms of the ontologies that a context
supports are available for use implicitly.  In this way, our definitions for terms are those necessary for logical
discussion of an argument, and gather into reusable units automatically.

The only problem foreseeable in this metaphor is for those dictionary aspects that contain contradictory
concepts, which in an ordinary language would be troublesome when agents combine the ontologies.  However, this is
really the old monster of name conflicts, which really only relates to extension-derived identity found in traditional
systems.  The Arrow system overcomes this by positing the existence of all resulting information spaces that result
from the various types of combinations of the clashing ontologies.

Now the Arrow system proposal relates to a dynamic, growing, general-purpose dictionary of concepts.  The
system naturally distributes a definition of an arrow in our dictionary, even across frames of knowledge.  The
definition extends to a far finer structure of information than does the traditional language, in that this dictionary via
arrows describes issues that constitute language and linguistic context definition as well.  A frame of knowledge of a
domain in this light relates to a collection of ontologies, where the various aspects (as ontologies) of the dictionary
specify the definitions of the subject matter.  The aspects relate to form a whole structure in which agents may reason
about the relations between these definitions and analyze the composite definitions formed.  Ontological crosscutting
is easily provided, since simple identification of terms between ontologies is sub-structural, that is, that one need not
be limited to mappings between atoms, but instead between arbitrary structures (perhaps infinitary or self-similar) of
atoms.

In order to present a specification to the user, the system collects the constraints specified for an arrow
within the desired frame of ontologies identified with the vocabulary specified by the user.  The natural system
development spreads constraints across borders between explicit and implicit worlds.  The system sees all constraints
as equal, yielding reflection on context trivially.  The interface filters out the implicit parts of the definition and
produces a structure of specification that extends to the base vocabulary that the user wants.

However, those parts of the definition, whether explicit or implicit, are available for the user to view and
modify, since the system allows the user to migrate around ontological frames freely.  If calculable ontologies define
the transitions between frames, then all the information with which the user was originally in contact is similarly
accessible within the destination frame.

4.9 Dynamics
The Arrow system as described above is static (or kinematic at best).  It remains to define the dynamics of

the Arrow system.  The Arrow system is a general-purpose information system that expresses contexts, ontologies,
and language models as first-order concepts.  It may range over many logics as context modification systems.  These
properties enable a novel means of expressing system dynamics.

As an information system, agents interpret all atoms within its domains primarily as atoms of information.
The means for introducing information to the system include automated deduction and undecidable selection.  The
former method consists of all information posited by the system due to invoking reasoning services that are available
to the system.  Technically, such actions do not introduce information to the Arrow system, since the arguments, as
constructions, are purely epistemic.  The latter consists of all actions that reduce to a kernel of information provided
solely by a human user.  For instance, we may consider for practical purposes that all automated deduction systems
are tactical problem-solvers, in that they decidably develop a given domain in search of results applicable to a target
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domain.  However, these deduction systems must always be applied by an algorithmic approach that is often less
semantically clean in its structure.  This strategy a user often provides who has in mind some goal for the results of the
inference engine that the system is often unable to encapsulate.  This is often either due to restriction of domain or to
absence of the applicable information that characterizes the user’s reasoning.  In current programming systems, the
concept of a command (or message-selection for objects or application for functions) usually represents the kind of
information that only the user can decide.  Some kinds of advanced reflective systems produce code themselves at a
fine-grain level and in doing so transfer the user choice type of information to the meta-level.  No current systems,
however, integrate the information involved into a single space for reasoning.

Of course, any programmer can tell you that, within a given programming system, the means to improving
system functionality is to feed the system more information that determines the ability of the system to manage other
information that it receives.  Obviously for the programmer, user choice embodies the program concept as well as the
data that it manages.  Within systems that cannot reflect, this information remains at the first-order level unless a
programmer explicitly and manually gives the system the meta-information required to handle the case and again
manually removes the redundant information.  This definition constitutes a solid cybernetic definition of the usual
notion of programmer as distinguished from user.  This discussion considers the natural evolution of information
systems toward utility to necessarily include the migration of user choice information to system deduction capabilities,
since such a tendency naturally obviates redundant human involvement in the management of the information system.
What distinguishes those aforementioned systems from the arrow proposal is that the Arrow system should optimize
the transition of information from user choice to system deduction.  From the knowledge-level perspective, the system
transports information from the space of tasks to that of models and methods.  At the model level, the view is
somewhat different, since the domains of models and methods blur due to extensive reflection.  The overall result is to
blur the distinction between user and programmer, to allow for a more equitable society concerning computations in
general.

Taking the graph over ontologies offered as an example for a basis, the Arrow system may develop its role in
managing information from the paths of decidable translation outlined among those contexts available for modeling.
A logic that manages the arrows and nodes in the graph system of ontologies and contexts can therefore manage the
overall process of transporting this information in a reliable way.  In addition, the logics employed as well as the
process for translating this information is subject to modeling, allowing the system direct control over its operation via
reflection.

Given this basis, the Arrow system proves an ideal platform for the automation of software production in
arbitrary ways, since it can model information transitions that include hardware-related issues.  For example, various
types of formal specifications easily describe the format and content of processor instructions and data formats.  The
Arrow system casts this type of information as an ontology.  In addition, agents may reliably specify protocols for
interacting with various hardware devices and external software programs, with possibly less precision, in the same
way.  In modern systems, such information is specialized so that access to that information is itemized.  By providing
a specification for an interface to an information device to the Arrow system, the user may then manage that device in
arbitrary ways, since the description is available for sequential composition into new ontologies and structuring into
frames.

As for the semantic character of these information transitions, the system will provide quite a different
paradigm than do traditional systems for its modification.  As discussed, the primary purpose of the system is to
translate information between contexts in order to promote overall system utility.  To maximize its capabilities to do
so, it provides maximum visibility for all information in the system relative to the context of the agent requesting the
information.  Simply removing any scope restriction stipulations for the system’s arrows provides maximum
visibility: from a context-neutral perspective, any arrow may reference any other arrow without compromising system
integrity.  However, the nature of the target context’s logical model directly affects the kind of information that the
context may support.

For example, a context of a purely functional paradigm must reify all concepts as functions that agree
ontologically with current functional atoms in that context.  Therefore, in order to realize the interpretation of a certain
concept in a functional domain, the target context must understand the types of information that the necessary function
manages.  This could require that agents transmit more information from the source domain to assist in “matching
ontologies” between the domains.  <<>>

The progression of user choice to system deduction strictly involves context shifts.  In order to introduce
new information to the system, the system must be capable of instantiating new arrows from specifications within the
system.  Assume, for instance, that the user makes a visual choice using a pointing device that corresponds to a
standard graphical user interface (GUI).  Within the Arrow system, the essential information update is the notification
of the update of the mouse’s hardware state-machine, which exists in time, space, and state-space.  This information is
immediately available for translation into the user-interface ontology (say, as a single-click with the mouse button at
such and such coordinates and about this time).  Traditional GUI programming models then translate the meaning of
this event into an abstract piece of information within a context that is abstract with respect to the underlying
hardware.  At that point (at the application level of abstraction), the information atom is decidedly within the arrow
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space and available for reasoning structures; it still embodies user choice, but is available in the context of logical
operations for modeling.  Therefore, if an agent posits a pattern about the user’s inputs, then other agents may factor
out the appropriate information from the user-input data, such as statistically insignificant discrepancies between the
model invocation and the measured input parameters.  The remaining information is strictly redundant, and as such is
subject to optimization heuristics by the system software; it is garbage for collection in traditional systems.  The
difference between the two types of systems is that the traditional type ignores information redundancy as an issue
altogether and instead focuses on simplicity of the implementation from a restricted perspective.

The total system’s semantics are of a functional paradigm, but at an information level, not simply at an
execution level.  In this way, information transformations are the fundamental abstraction type at the user level for the
system.  The constraint for such actions in this sense is to conserve information as bounded by user choice: the user
may specify a heuristic that discards certain information types as noise.  Typical examples of noise in current software
systems include the timings and details of mouse input sequences of the previous example.  Therefore, these
information transformations map an existing arrow information state to a new one.

Side effects in the system are impossible in this information model.  Any side effects resulting from such
transformations could only generate information that is by definition unusable by the system; such information is
implicitly discarded, and only the user can help the system recover from this loss.  Of course, this sort of information
loss has always existed in current systems, in terms of undecidable pattern recognition.  The Arrow system improves
on the current plight by offering a better base of information system from which to construct the pattern
identifications.

However, the effects of the function for total system semantics would not necessarily be finite at a first-order
level

The system can reference itself as a whole using self-similarity factorization of infinitary structures that
result.

Specification of programs: data-flow and control-flow graphs have axiomatic definitions, with parts being
static or dynamic with respect to contexts

Specification of verification: inference-flow graphs

Show that the method of integration of these graphs, traditionally static in traditional languages, is now
dynamic and first-order

Context construction, thereby, and its character

Hence, model-level reflection is trivial, since this achieves a highly utilitarian method of dynamic agency

4.10 User Interface
To consider the application of the Arrow system to the issue of user-interface, one must consider the nature

of the state of information of the system.  The models within the system should transcend the usual context of a
“snapshot in time” for the machine, so that it encapsulates the time predicates that the user wishes to enforce.  In this
way, the user's desires directly affect the usual notion of implementation as it relates to interactivity of the software
system and efficiency.

The system models the ontological frame that the user employs, and interacts with the user based on that
group of ontologies.  In model-level terms, the system speaks directly to the ontology, and merely passes the
conversation along to the user for review.  The user, in turn, acts for the ontology in communicating with the system.
The user may manipulate the model of the ontology directly, or the system may make ‘guesses’ about shifts in the
user’s knowledge frame based on input.  It could produce an information feedback loop in the attempt to maintain
effective communication with the user of the system.  These ‘guesses’ may generate several ‘sub-frames’ inconsistent
with each other, but the system can manage the interactions between these frames reliably and may even discard a
sub-world based on interactions with the user.

Note that the information atoms presented to the user by the Arrow system need not be arrows within the
system directly.  The system should regard the user as (capable of) recognizing arbitrary kinds of ontologies, and,
since it is often the more capable nonmonotonic reasoner, is the one for which the system should arrange its
ontologies.  In order to facilitate this process, the system’s agents must “understand” this situation and its rationale.

Information density of various ontologies for user-interface, particularly for user-input

Text identifiers – proper names, vocabulary, terminology, user dictionaries, etc

GUI’s vs. CLI’s – windowing arrangement information (dialog boxes vs. command-line parameters) (views
vs. pipes) (user choice vs. derived information and the transition process for the system) (how this improves system
utility)
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4.11 Garbage Collection
A naturally difficult notion for such a system is its representation on a finite-state device, such as the modern

computer.  The solution seems to be to maintain the required amount of ‘kernel’ information to a finite, hopefully
compact, size.  This kernel would consist of the information required to build all other parts of the system, particularly
the infinitary structures.  The system software must manage a reference to an object with an infinitary internal
structure in a different way.

The system reduces the representation of a domain to the axioms of decidable parts, including the necessary
annotations for describing the rest of the domain.

Input from the user that has not been rationalized by the system must be part of this kernel, since the system
deals with it within its own separate knowledge-frame that possesses no calculable ontologies until given them by the
system.

The Arrow system directly supports a partial-evaluation model.  The appropriate context considers states of
evaluation as nodes within a graph.  Arrows between the states representing function invocations are available for
first-order study.  The patterns that emerge in the graph, if easily re-constructible, justify garbage-collection.  If the
ontology for steps of evaluation is inappropriate, then an agent may apply a different ontology to the domain of the
graph to provide a different level of structure.

The garbage collector’s axiom is to conserve system information and discard all noise.  It therefore operates
by definition over the space of redundantly stored information as well as the undesired information (i.e. that labeled as
noise).  The system discards undesirable information based on a heuristic that addresses performance as regards speed
and persistent storage requirements.  The system software retains redundant information, however, based on
performance criteria, since necessary calculations (for, say, data format conversion) are often expensive in resources
to reproduce.  If a non-calculable process develops the redundancy, then the system must retain resulting information
unless explicitly countermanded by the user.

Potentially constructed information is substitutable for the actual information derived, just as the results of
function applications are often denoted by their persistent invocation points in modern languages, vice identifiers
bound to the results’ storage location.  This referential shift to intension of function application, vice its extension (the
stored result), allows the garbage collector to operate based on explicit references alone to data.  A possible
implementation of this concept within arrows is to explicitly encode the finite parts of both the intension and the
extension of a structure, allowing the garbage collector to collect redundant extensional data in a lazy way.  The
garbage collector should tend to preserve the intension (the generating function) of the structure over extension, since
the former tends to human-level intelligence to derive, whereas the latter is usually calculable.

4.12 Constructive Implementation
The plan for the implementation of the Arrow system involves the model of reflection often introduced in

the usual texts involving reflection.  By subsuming the functionality of the virtual machines upon which the
implementators base the prototype system, the Arrow system environment may extend to a level that allows a
reconstruction of the virtual machine implementation.  However, this method simply allows the implementors to re-
model the virtual machine, at a heavy cost in human effort.  The criteria for the completion of the system include that
the semantic capabilities should encompass the description of a minimum amount of functionality of the underlying
hardware, as well as some operational algebras that enable code generation.  This suggests a model where an initial
virtual machine provides a simple basis for development of a knowledge base for the Arrow system, ensuring to
include an adequate formal model of the virtual machine.  The remaining task would be to completely re-implement
the virtual machine’s semantics of interface from within the system.  To that end, the virtual machine should provide a
direct means to access the underlying hardware as well as a simple model of that hardware state-machine.  Once the
Arrow system completely re-implements the virtual machine successfully, so that the system can bootstrap itself, then
it will have accomplished elementary reflection.  The final task would then be to place the implementation ‘code’
within an environment with an adequate number of modelings of the specification, to place the specification in reach
of all of the system’s main ontologies, thereby enabling model-level reflection.

Text identifiers constitute information that is only interpretable by the user.  As such, the information
belongs to the domains associated with user interface within the appropriate part of the system.  This information
subsumes what usually comprises the documentation for a programming system, traditionally maintained solely by the
user.  In the Arrow system, a more enlightened view exists, placing this domain under the system’s model-level
reflective capabilities.  Formal theories of the understanding of natural human language may assist in translating
ontologies into human-readable documentation, and this process itself is of course available for improvement under
the system design.  The naturally useful goal is of course to render all documentation as a dynamically calculable
interface with the ontology frame that the user prefers.  Of course, in any Arrow system wherein information is being
added, the system receives all new information as non-calculable, and then proceeds to define it in terms of existing
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information as specified by meta-information introduced to it.  It follows that the system will not be able to
completely describe the meaning of its information.

The information interface between the system and the user is not to be trusted implicitly, since human mental
processes are often incalculable for modern machines.  In fact, often it is more useful to forgo system understanding in
order to facilitate communication between people, given that the lifetime of the information is temporary.

5 Conclusions
While the claims made for the Arrow system’s potential seem grandiose, the basis for system’s information

model lies in modern research systems as well as in the examples of computing systems of the past.  The central
concept of the system design is to increase the capabilities of the system to analyze and act to improve its performance
and utility by generalizing the system’s modeling capabilities in a meaningful way.  The anticipated result is the
greater overall freedom in the use and re-use of information for arbitrary purposes, and to minimize the negative
impacts on society associated with maintaining a large body of knowledge.  In this way, the design intends to fully
deliver the promise that computing devices exhibit, in spite of the restrictions in modern systems due to hardware and
information protocol heterogeny.  The full implementation of the Arrow system should live up to its promises.
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